E250W 12V DC/DC POWER SUPPLY

This guide has been written with the aim of providing an insight into powering a computer, using a standard 12V DC power supply. Inside a computer many different voltages are needed, from 12V supplies for the drives to a much smaller 3.3V for the CPU.

To convert our 12V input, into the variety of voltages needed to power a PC we find the most efficient way is to employ a DC to DC converter. The way this device works is by taking in the 12V DC power direct from your ship's batteries, and then splicing and converting this into the many different voltages your computer needs. A more basic way of thinking about it is to imagine a standard ATX power supply, but in this case it would take in 12V DC rather than the typical 240V AC mains voltage.

The E250W 12V DC power supply comes complete with all cables. If you are converting an old desktop computer, you'll need to remove the old 240V AC ATX power supply and disconnect these cables. The E250W 12V DC power supply is then inserted and the cables connected, it is that simple.

Input Data:	
Input Voltage:	6-30VDC
Input Current	20A @ 12VDC
Impact Current:	25A
Input Fuse:	40A

Output Data:					
Output Voltage:	+3.3 V	+5 V	+12	-12V	+5 VSB
Output Current	15A	14A	10A	0.2A	2A
Voltage Regulation	5%	5%	5%	10%	5%
Output Ripple	50MV	50M V	120mV	120mV	50MV
Overvoltage Protection	Yes	Yes	Yes	N / A	N / A
Overcurrent Protection	Yes	Yes	Yes	Yes	Yes
Short-circuit Protection	Yes	Yes	Yes	Yes	Yes
Risetime	10ms	10ms	10ms	10ms	10ms